# Bolt 7 P2P Node & Channel discovery

## short\_channel\_id

#### <u>What it is</u>

Unique description of the funding transaction.

#### **Breakdown**

- 3 bytes block height
- 3 bytes transaction index
- 2 bytes output index

1413847x29x0 block height tx outpet

#### **Purpose**

Implementation agnostic method of communicating unique channels

#### **Drawbacks**

- \* Confirmations necessary before usage
- \* 2 methods to reference a channel is complex!



## Messages

channel\_announcement, node\_announcement, channel\_update, announcement\_signatures

## announcement\_signatures

gossip messages

### announcement\_signatures

#### **Purpose**

Opt in mechanism to allow announcement to rest of network

#### <u>What it is</u>

signatures necessary for peer to construct channel\_announcement message

#### <u>How it's used</u>

Proves node ownership over funding transaction

type: 259 ( announcement\_signatures )

2. data:

- o [ channel\_id : channel\_id ]
- o [ short\_channel\_id : short\_channel\_id ]
- o [ signature : node\_signature ]
- o [ signature : bitcoin\_signature ]

#### When is it broadcasted

if

open\_channel.announce\_channel is set && shutdown message not sent && funding\_locked is sent and recv && funding\_tx has 6 confs on reconnection if above is met

references

http://site.ieee.org/icbc-2019/files/2019/05/ICBC-2019-Tutorial-3-Lightning-Network-Protocol.pdf https://github.com/lightningnetwork/Ind/issues/1636 https://bitcoin.stackexchange.com/questions/80019/what-is-the-purpose-of-the-announcement-signatures-message-as-specified-by-the-1

## announcement\_signatures

#### How the peer processes it

- if the short\_channel\_id is NOT correct:
  - SHOULD fail the channel.
- if the node\_signature OR the bitcoin\_signature is NOT correct: • MAY fail the channel.
- if it has sent AND received a valid announcement\_signatures message:
  SHOULD queue the channel\_announcement message for its peers.
- if it has not sent funding\_locked:
  - MAY defer handling the announcement\_signatures until after it has sent funding\_locked
  - otherwise:
    - MUST ignore it.

- type: 259 (announcement\_signatures)
- 2. data:
  - o [ channel\_id : channel\_id ]
  - o [ short\_channel\_id : short\_channel\_id ]
  - o [ signature : node\_signature ]
  - o [ signature : bitcoin\_signature ]

Failure to broadcast means peer cannot create their channel\_announcement edge (remember, most channels are 2 edges (bi-directional))

gossip messages

#### **Purpose**

communicates ownership info of a channel across the network

#### <u>What it is</u>

Proofs of the existence of a channel between node\_1 and node\_2

#### How it's used

Nodes pass this msg throughout the network, check the proofs to to connect the onchain bitcoin key to the lightning key.

Channel is not usable until fee and expiry is broadcast via channel\_update

Proving the existence of a channel between node\_1 and node\_2 requires:

proving that the funding transaction pays to bitcoin\_key\_1 and bitcoin\_key\_2
 proving that node\_1 owns bitcoin\_key\_1
 proving that node\_2 owns bitcoin\_key\_2

1. type: 256 ( channel\_announcement )

#### 2. data:

- o [ signature : node\_signature\_1 ]
- o [ signature : node\_signature\_2 ]
- o [ signature : bitcoin\_signature\_1 ]
- o [ signature : bitcoin\_signature\_2 ]
- [ u16 : len ]
- o [ len\*byte : features ]
- [ chain\_hash : chain\_hash ]
- o [ short\_channel\_id : short\_channel\_id ]
- o [ point : node\_id\_1 ]
- o [ point : node\_id\_2 ]
- o [ point : bitcoin\_key\_1 ]
- o [ point : bitcoin\_key\_2 ]

#### When is it broadcasted

If open\_channel.announce\_channel is set

references

http://site.ieee.org/icbc-2019/files/2019/05/ICBC-2019-Tutorial-3-Lightning-Network-Protocol.pdf https://github.com/lightningnetwork/lnd/issues/1636

valid signature of h using each node secret

Proving the existence of a channel between node\_1 and node\_2 requires:

proving that the funding transaction pays to bitcoin\_key\_1 and bitcoin\_key\_2
 proving that node\_1 owns bitcoin\_key\_1
 proving that node\_2 owns bitcoin\_key\_2

valid signature of h using each node secret

must relate to respective node funding keys

Proving the existence of a channel between node\_1 and node\_2 requires:

proving that the funding transaction pays to bitcoin\_key\_1 and bitcoin\_key\_2
 proving that node\_1 owns bitcoin\_key\_1
 proving that node\_2 owns bitcoin\_key\_2



valid signature of h using each node secret

must relate to respective node funding keys

min length for features

bolt 9 features negotiated

Proving the existence of a channel between node\_1 and node\_2 requires:

proving that the funding transaction pays to bitcoin\_key\_1 and bitcoin\_key\_2
 proving that node\_1 owns bitcoin\_key\_1
 proving that node\_2 owns bitcoin\_key\_2



valid signature of h using each node secret

must relate to respective node funding keys

min length for features

bolt 9 features negotiated

Proving the existence of a channel between node\_1 and node\_2 requires:

proving that the funding transaction pays to bitcoin\_key\_1 and bitcoin\_key\_2
 proving that node\_1 owns bitcoin\_key\_1
 proving that node 2 owns bitcoin key 2



valid signature of h using each node secret

must relate to respective node funding keys

min length for features

bolt 9 features negotiated

genesis block hash to identify chain

Proving the existence of a channel between node\_1 and node\_2 requires:

proving that the funding transaction pays to bitcoin\_key\_1 and bitcoin\_key\_2
 proving that node\_1 owns bitcoin\_key\_1
 proving that node 2 owns bitcoin key 2



valid signature of h using each node secret

must relate to respective node funding keys

min length for features

bolt 9 features negotiated

genesis block hash to identify chain

reference to funding tx

Proving the existence of a channel between node\_1 and node\_2 requires:

proving that the funding transaction pays to bitcoin\_key\_1 and bitcoin\_key\_2
 proving that node\_1 owns bitcoin\_key\_1
 proving that node 2 owns bitcoin key 2



valid signature of h using each node secret

must relate to respective node funding keys

min length for features

bolt 9 features negotiated

genesis block hash to identify chain

reference to funding tx

pubkeys in lexicographically ascending order Proving the existence of a channel between node\_1 and node\_2 requires:

proving that the funding transaction pays to bitcoin\_key\_1 and bitcoin\_key\_2
 proving that node\_1 owns bitcoin\_key\_1
 proving that node 2 owns bitcoin key 2



valid signature of h using each node secret

must relate to respective node funding keys

min length for features

bolt 9 features negotiated

genesis block hash to identify chain

reference to funding tx

pubkeys in lexicographically ascending order Proving the existence of a channel between node\_1 and node\_2 requires:

proving that the funding transaction pays to bitcoin\_key\_1 and bitcoin\_key\_2
 proving that node\_1 owns bitcoin\_key\_1
 proving that node 2 owns bitcoin key 2



valid signature of h using each node secret

must relate to respective node funding keys

min length for features

bolt 9 features negotiated

genesis block hash to identify chain

reference to funding tx

pubkeys in lexicographically ascending order

respective funding\_pubkey

Proving the existence of a channel between node\_1 and node\_2 requires:

proving that the funding transaction pays to bitcoin\_key\_1 and bitcoin\_key\_2
 proving that node\_1 owns bitcoin\_key\_1
 proving that node 2 owns bitcoin key 2



## node\_announcment

gossip messages

## node\_announcement

#### Purpose

communicates node metadata across the network

#### What it is

connection info, arbitrary attributes for display on explorers, broadcasted features, etc

#### How it's used

Useful for nodes with a changing IP. Is ignored unless a channel is associated with it.

When is it broadcasted

After channel\_announcement

references

http://site.ieee.org/icbc-2019/files/2019/05/ICBC-2019-Tutorial-3-Lightning-Network-Protocol.pdf https://bitcoin.stackexchange.com/questions/80546/how-does-the-lightning-network-handle-changing-ips 1. type: 257 ( node\_announcement ) 2. data:

o [ signature : signature ]

○ [ u16 : flen ]

o [ flen\*byte : features ]

o [ u32 : timestamp ]

o [ point : node\_id ]

o [ 3\*byte : rgb\_color ]

o [ 32\*byte : alias ]

0 [ u16 : addrlen ]

o [ addrlen\*byte : addresses ]

### node\_announcement

#### Purpose

sha256 of rest of packet communicates node metadata across the network with sec key of node\_id

#### What it is

connection info, arbitrary attributes for display on explorers, broadcasted features, etc

#### How it's used

Useful for nodes with a changing IP. Is ignored unless a channel is associated with it.

When is it broadcasted

After channel announcement

references

http://site.ieee.org/icbc-2019/files/2019/05/ICBC-2019-Tutorial-3-Lightning-Network-Protocol.pdf https://bitcoin.stackexchange.com/guestions/80546/how-does-the-lightning-network-handle-changing-ips

- 1. type: 257 (node announcement) 2. data:
  - o [ signature : signature ]
  - 0 [ u16 : flen ]

signature of double

- o [ flen\*byte : features ]
- o [ u32 : timestamp ]
- o [ point : node\_id ]
- o [ 3\*byte : rgb\_color ]
- o [ 32\*byte : alias ]
- o [ u16 : addrlen ]
- o [ addrlen\*byte : addresses ]

### node\_announcement

#### Purpose

sha256 of rest of packet communicates node metadata across the network with sec key of node\_id

#### What it is

connection info, arbitrary attributes for display on explorers, broadcasted features, etc

#### How it's used

Useful for nodes with a changing IP. Is ignored unless a channel is associated with it.

When is it broadcasted

After channel announcement

#### references

http://site.ieee.org/icbc-2019/files/2019/05/ICBC-2019-Tutorial-3-Lightning-Network-Protocol.pdf https://bitcoin.stackexchange.com/guestions/80546/how-does-the-lightning-network-handle-changing-ips

#### address descriptors so others can reach directly

signature of double

1. type: 257 (node announcement) 2. data:

o [ signature : signature ]

0 [ u16 : flen ]

o [ flen\*byte : features ]

o [ u32 : timestamp ]

- o [ point : node\_id ]
- o [ 3\*byte : rgb\_color ]
- o [ 32\*byte : alias ]
- o [ u16 : addrlen ]

o [ addrlen\*byte : addresses ]

#### defined types:

- 1 ipv4
- 3 TorV2 [Deprecated]
- 4 TorV3

gossip messages

#### **Purpose**

Update properties and policies of an active edge

#### <u>What it is</u>

Policy info. Fees, cltv, supported features, active timestamp

#### How it's used

references

Used to broadcast if a channel is disabled. Channels can't be used without at least one of these messages reaching a user as it conveys ctlv and fee data 1. type: 258 ( channel\_update )

#### 2. data:

- [ signature : signature ]
- o [ chain\_hash : chain\_hash ]
- o [ short\_channel\_id : short\_channel\_id ]
- o [ u32 : timestamp ]
- o [ byte : message\_flags ]
- o [ byte : channel\_flags ]
- [ u16 : cltv\_expiry\_delta ]
- o [ u64 : htlc\_minimum\_msat ]
- o [ u32 : fee\_base\_msat ]
- o [ u32 : fee\_proportional\_millionths ]
- o [ u64 : htlc\_maximum\_msat ] (option\_channel\_htlc\_max)

#### When is it broadcasted

- if funding\_locked has been received
- may be sent to peer to communicate channel parameters

MUST NOT be forwarded to other peers in this

ase

double-sha256 of rest of packet with nodeID

genesis block hash for chain

identify which channel this is in regards to

- - [ dio . crev\_cxpiry\_derra
  - o [ u64 : htlc\_minimum\_msat ]
  - o [ u32 : fee\_base\_msat ]
  - o [ u32 : fee\_proportional\_millionths ]
  - o [ u64 : htlc\_maximum\_msat ] (option\_channel\_htlc\_max)

#### references

double-sha256 of rest of packet with nodeID

genesis block hash for chain

identify which channel this is in regards to

greater than previous timestamp for edge

- o [ u32 : fee\_base\_msat ]
- o [ u32 : fee\_proportional\_millionths ]
- o [ u64 : htlc\_maximum\_msat ] (option\_channel\_htlc\_max)

#### references

double-sha256 of rest of packet with nodeID

genesis block hash for chain

identify which channel this is in regards to

greater than previous timestamp for edge

indicate if optional messages exist at the end of the core fields



only BOLT specified optional message. Indicates max amount sendable with one htlc

#### references

The channel\_flags bitfield is used to indicate the direction of the channel: it identifies the node that this update originated from and signals various options concerning the channel. The following table specifies the meaning of its individual bits:



only BOLT specified optional message. Indicates max amount sendable with one htlc

double-sha256 of rest of packet with nodeID

genesis block hash for chain

identify which channel this is in regards to

greater than previous timestamp for edge

indicate if optional messages exist at the end of the core fields

#### references

The channel\_flags bitfield is used to indicate the direction of the channel: it identifies the node that this update originated from and signals various options concerning the channel. The following table specifies the meaning of its individual bits:



only BOLT specified optional message. Indicates max amount sendable with one htlc

double-sha256 of rest of packet with nodeID

genesis block hash for chain

identify which channel this is in regards to

greater than previous timestamp for edge

indicate if optional messages exist at the end of the core fields

cltv policy

#### references

The channel\_flags bitfield is used to indicate the direction of the channel: it identifies the node that this update originated from and signals various options concerning the channel. The following table specifies the meaning of its individual bits:



only BOLT specified optional message. Indicates max amount sendable with one htlc

#### references

The channel\_flags bitfield is used to indicate the direction of the channel: it identifies the node that this update originated from and signals various options concerning the channel. The following table specifies the meaning of its individual bits:



#### references

## Sequence of events

channel\_announcement

## node\_announcement

channel\_update

references http://site.ieee.org/icbc-2019/files/2019/05/ICBC-2019-Tutorial-3-Lightning-Network-Protocol.pdf https://github.com/lightningnetwork/lnd/issues/1636

## Sequence of events

channel\_announcement

unusable w/o both

node\_announcement

channel\_update

references http://site.ieee.org/icbc-2019/files/2019/05/ICBC-2019-Tutorial-3-Lightning-Network-Protocol.pdf https://github.com/lightningnetwork/lnd/issues/1636

## Sequence of messages

channel\_announcement

unusable w/o both

## node\_announcement

ignored w/o L\_\_\_\_\_ channel\_announcement

channel\_update

references http://site.ieee.org/icbc-2019/files/2019/05/ICBC-2019-Tutorial-3-Lightning-Network-Protocol.pdf https://github.com/lightningnetwork/lnd/issues/1636

## Querying tools

query\_short\_channel\_ids

query\_channel\_range

gossip\_timestamp\_filter

returns channel\_announcement and channel\_update messages for specific channels returns all channels in specified block range returns channel\_announcements and channel\_update messages by date range

Used when node sees channel\_update but not channel\_announcement for a channel Used to discover new channels

Used to receive real time updates in channel graph

references

https://github.com/lnbook/lnbook/blob/ece69d5c2ac8116ef83c1826bd43bd4b33c74dca/appendix protocol messages.asciidoc#the-query channel range-message https://github.com/lnbook/lnbook/blob/ece69d5c2ac8116ef83c1826bd43bd4b33c74dca/appendix\_protocol\_messages.asciidoc#the-gossip\_timestamp\_range-message http://site.ieee.org/icbc-2019/files/2019/05/ICBC-2019-Tutorial-3-Lightning-Network-Protocol.pdf https://docs.rs/lightning/0.0.101/lightning/ln/msgs/struct.ReplyShortChannelIdsEnd.html https://bitcoinoos.org/en/newsletters/2019/08/07/

# Thank you! ANY QUESTIONS?

You can find me at: @\_arshbot

harshagoli@protonmail.com